First Name

Last name

1. Fill in the missing reagents or products (no mechanism).

2) Give the reagents for the following transformations.

H₃C∕

H₃C.

H₃C CH₃

3. Provide the missing reagents or products

 H_2 , Pd/C can reduce C=C of enone PtO₂ can hydrogenate C=O

4) Match all applicable oxidation reactions and reagents listed here to the following transformations:

a. Match all applicable reduction reactions and reagents listed here to the following transformations:

a.	Birch Reduction	b. Red-Al	c. Raney Nickel	d. Super Hydride
e.	DIBAI	f. Cathecol Borane	g. L-selectride	h.Barton Deoxygenation
i. L	iAIH4	j. NaBH₄	K. Na, NH ₃	I. BH₃·THF
m.	Pd-C, H ₂	n. LiBH₄		

Provide the missing reagent(s) or product. What are the names of these reactions?

6)

The following reaction is a cyanide-catalyzed (nucleophile catalysis) variant of a redox neutral reaction that we three to nest we then we reculd apply the intervention of the interventi

Parent pinacol coupling

For the following NHC (N-heterocyclic carbene) catalyzed internal redox reaction, provide a detailed mechanism for the transformation.

Mechanism:

In the synthesis below, provide the name and the mechanism for the reaction in Part A. For Part B, provide the missing reagents. Make your that your sequence is appropriate.

• Give the missing reagent(s) for the synthesis of Quercus lactone B from 2.

mCPBA

• In both steps, a migration takes place. Explain, for both steps, which group migrates preferentially.

The group that stabilizes a positive charge better migrates first in pinacol rearrangement. Largest group usually migrates in Baeyer-Villiger oxidation

9)